学报简介

    智能系统学报(CAAI Transactions on Intelligent Systems)由中国人工智能学会和哈尔滨工程大学联合主办,是中国人工智能学会会刊之一。主要刊登神经网络与神经计算、智能信息处理、自然语言理解、智能 ...

学报详情

刊名: 智能系统学报
CAAI Transactions on Intelligent Systems
主办:  中国人工智能学会;哈尔滨工程大学
周期:  双月
出版地:黑龙江省哈尔滨市
语种:  中文
开本:  大16开
ISSN: 1673-4785
CN:   23-1538/TP
复合影响因子: 0.874
综合影响因子: 0.479
历史沿革:
现用刊名:智能系统学报
创刊时间:2006
中文核心期刊(2014)

01

您所在的位置:首页 > 学报导读 > 2020 > 01 >

注意力机制和Faster RCNN相结合的绝缘子识别

作者:赵文清 程幸福 赵振兵 翟永杰

关键词: Faster RCNN; 绝缘子; 注意力机制; SENet; 特征通道; RPN; 建议框; 特征向量;

摘要:

针对利用Faster RCNN识别绝缘子图像过程中定位不够准确的问题,提出一种注意力机制和Faster RCNN相结合的绝缘子识别方法。在特征提取阶段引入基于注意力机制的挤压与激励网络(Squeeze-and-Excitation Networks,SENet)结构,使模型能够关注与目标相关的特征通道并弱化其他无关的特征通道;根据绝缘子的特点,对区域建议网络(region proposal network,RPN)生成锚点(anchor)的比例和尺度进行调整;在全连接层运用注意力机制对周围建议框的特征向量赋予不同权重并进行融合,更新目标建议框的特征向量。实验结果表明:与传统的Faster RCNN算法相比,改进后的算法能够较好地识别出绝缘子。

上一篇:快速的圆投影图像匹配算法
下一篇:基于数据增广和复制的中文语法错误纠正方法